Fang Fang, Julio Kovacs, Garrett Sadler, Klee Irwin (2014)

This paper presents the construction of a dense, quasicrystalline packing of regular tetrahedra with icosahedral symmetry. This quasicrystalline packing was achieved through two independent approaches. The first approach originates in the Elser- Sloane 4D quasicrystal – a 3D slice of the quasicrystal contains a few types of prototiles. An initial structure is obtained by decorating these prototiles with tetrahedra. This initial structure is then modified using the Elser- Sloane quasicrystal itself as a guide. The second approach proceeds by decorating the prolate and oblate rhombohedra in a 3-dimensional Ammann tiling. The resulting quasicrystal has a packing density of 59.783%. We also show a variant of the quasicrystal that has just 10 plane classes (compared with the 190 of the original), defined as the total number of distinct orientations of the planes in which the faces of the tetrahedra are contained. The small number of plane classes was achieved by a certain “golden rotation” of the tetrahedra.