Peculiarities of hydrogen interaction with Ni powders and melt spun Nd$_{90}$Fe$_{10}$ alloy

Vladimir Dubinko1,2, Oleksii Dmytrenko 1,2, Valeriy Borysenko1,2, Klee Irwin2, Russ Gries2

1NSC Kharkov Institute of Physisc&Technology, Ukraine
2Quantum gravity research, Los Angeles, USA
MOTIVATION

Hydrogen interaction with Ni powders has provoked a lot of excitement and controversy due to the works of Rossi, Parkhomov and others, who claimed to produce excess heat in their experiments that could not be explained by conventional chemical reactions. Yet, there is no reliable 100% evidence of the effect up to date, and some of subsequent experiments produced less or zero effect as their measuring accuracy increased. Unfortunately, the claimed evidence often depends on indirect calorimetry methods and as such it does not produce an ultimate proof. We present an experimental setup that allows accurate measuring of the main parameters controlling the reaction: hydrogen pressure, temperature inside the fuel and at the heater, the difference between which can provide direct evidence of the excess heat.

Our program pursues two goals: (i) verify the previous results and (ii) test our facility in a wide range of parameters to be used in experiments with novel types of fuel that we plan to create in future.
PREHISTORY
SUCCESSFUL replication of LENR performed by Nick Oseyko (2015)

(a) Reactor

(b) Temperature control

(c) Control experiment: 1 g of Ni powder
Without ‘fuel’

(d) ~40 W difference in power consumption
due to 0.1 g of ‘fuel’ – LiAlH₄
UNSUCCESSFUL replication of LENR performed by Nick Oseyko (2016)
Outline of the present experiments

• Interaction of Ni with H and LiAlH$_4$ under heating and gamma irradiation

• Interaction of melt spun amorphous alloy Nd$_{90}$Fe$_{10}$ with H/D under heating and gamma irradiation
Ceramic tube (1); heat-insulation (2); experimental ‘fuel’ (3); ceramic tube with a heater (4).

Ceramic tube (1); with electric current inputs for the heater (2); flange for entering the thermocouples T1 and T2 (3); gas valves (4); vacuum valve (5).
Photo of the reactor system
Electron accelerator ELIAS at the NCS KIPT
The spectra of bremsstrahlung γ-quanta after the tantalum convertor under its irradiation by electron beams of different energies.
SEM of the Nickel_Oseyko, Kiev

SEM of the Nickel_Archer, UK
The time dependence of the temperatures of the sample (T1) and the heater (T2) as well as the input power to the heater (the seventh day of the experiment)
Irradiation of the bremsstrahlung γ-quantum flux with a continuous energy spectrum, received on a tantalum convertor using an electron beam with the current of 160 μA and the energy of 2.5 MeV
The first experiment with Nickel_Oseyko and LiAlH₄. (02-05-2017)

Excess heat ~1 MJ ???
The second experiment with Nickel_Oseyko and LiAlH$_4$. (19-05-2017)
Artefact due to the W-Re thermocouple degradation ???
DISCUSSION

It looks like the interaction of W-Re thermocouple with LiAlH$_4$ resulted in a degradation of the thermocouple, which started showing either higher or lower temperatures than the real T, with unpredictable outcome. Why it responds differently to the same environment, is unclear at the moment.

In his abstract for the conference, Daniel Szumski claims that

“both endo-thermal and exo-thermal nuclear reactions occur, and that it is the predominance of one over the other that produces excess heat or no excess heat. It is only the sign of the heat change that is random.”

However, in our case the second thermocouple did not show any response to the reaction, indicating an artefact.
Interaction of melt spun Nd\textsubscript{90}Fe\textsubscript{10} with H\textsubscript{2} and D\textsubscript{2}

Motivation
Chemical and Nuclear catalysis

the role of disorder in the LAV creation

“Cracks and small particles are the Yin and Yang of the cold fusion environment” E. Storms

Structure of dimeric citrate synthase (PDB code 1IXE). Only α-carbons are shown, as spheres in a color scale corresponding to the crystallographic B-factors, from smaller (blue) to larger (red) fluctuations [Dubinko, Piazza, 2014]
Creation of nonequilibrium structures

by fast cooling (up to 10^6 K/s)

The appearance (a) and surface morphology (b) of the melt spun Nd$_{90}$Fe$_{10}$ films. (c) The unite cell of amorphous phase Nd$_2$Fe$_{17}$ entering the initial microstructure of Nd$_{90}$Fe$_{10}$.
Diffractograms of three different films, where the height of the diffraction peak corresponds to the crystalline fraction in a sample:

- $X_c = 10\%$ (blue curve);
- 20% (green curve) and
- 45% (red curve).
Hydrogenation of \(\text{Nd}_{10}\text{Fe}_{10} \) under DC heating

Nd\(_{90}\text{Fe}_{10} \) films with \(X_c = 11\% \) of a mass 2.3713 g wrapped in a Cu foil of a mass 1.6225 gram. The loading ratio measured by the H pressure drop after hydrogenation was \(~1.6\) H per metal atom (\(~1.36\) wt% H). ‘Outside temperature’ is measured at 2 mm distance from the external ceramic wall of the reactor.
Nd\textsubscript{90}Fe\textsubscript{10} films with $X_c = 11\%$ of a mass 2.3713 g wrapped in a Cu foil of a mass 1.6225 gram before and after hydrogenation
Unite cells of fcc NdH$_2$ (left) and hcp Nd$_2$Fe$_{17}$H$_{4.6}$ (right) phases. NdH$_2$ is a dominating phase containing a majority of absorbed hydrogen.
DSC of Nd$_{90}$Fe$_{10}$ samples in the Ar (11.9 mg; heating rate 20 K/min - red curves) and H/He atmosphere (18.8 mg; heating rate 10 K/min - blue curves)
DISCUSSION

The amount of heat produced by the observed reaction \((\text{without account of the heat dissipation})\) can be estimated as \(2585 \text{ J}\) given by the sum

\[
\Delta Q_{\text{tot}} = \Delta Q_{\text{NdFe+Cu}} (830 \text{ K}) + \Delta Q_{\text{Al}_2\text{O}_3} (13 \text{ K}) = 1263 \text{ J} + 1322 \text{ J} = 2585 \text{ J}
\]

Dividing this heat by the amount of absorbed hydrogen that caused the reaction, 0.031 g, one obtains a specific heat of hydrogen absorption as

\[
Q_H = \frac{2585 \text{ J}}{0.032 \text{ g}} = 80170 \text{ J/g}
\]

Specific heat of hydrogen absorption in a DCS experiment is given by \(11300 \text{ J/g}\), which is almost an order of magnitude less than \(80170 \text{ J/g}\) estimated in our hydrogenation experiments. It means that the underlying reactions taking place in our experiments should be different from those taking place in a DSC installation.
What is happening?

Hydrogenation of the amorphous Nd\textsubscript{90}Fe\textsubscript{10} structure excites LAVs \Rightarrow LAVs catalyze H absorption and LENR \Rightarrow LENR produces heat \Rightarrow heat melts the structure, which kills LAVs and stops LENR \Rightarrow the samples cool down in the form of hydride crystals: NdH\textsubscript{2} (fcc), Nd\textsubscript{2}Fe\textsubscript{17}H\textsubscript{4.8} (hcp) and Nd(OH)\textsubscript{3} (hcp) \Rightarrow shown by X ray analysis

What is to be done?

To slow down the reaction by regulating H supply or taking away produced heat?
Deuterium absorption by $\text{Nd}_{90}\text{Fe}_{10}$ mixed with Cu powder

$\text{Nd}_{90}\text{Fe}_{10}$ powder with $X_c = 11\%$ of a mass 1.7222 g mixed with Cu powder of a mass 2.2526 g, wrapped in a Cu foil of a mass 0.43955 g and packed in a Cu tube of a mass 9.565 g.
CONCLUSIONS on Nd$_{90}$Fe$_{10}$ experiment:

Quantitative analysis have shown that the amount of heat produced in Nd$_{90}$Fe$_{10}$ samples in our experiments cannot be explained by DSC data on the heat produced in small samples.

One of the possible explanations of this discrepancy is based LENR taking place at the initial stage of hydride formation, when 80÷90% of amorphous phase in the films support the LAV formation, which triggered LENR. Subsequently, the amorphous phase transforms to crystalline hydrides where the LAVs do not form, which stops the LENR. Upon cooling, various hydride phases are observed by X ray analysis: NdH$_2$ (fcc) and Nd$_2$Fe$_{17}$H$_{4.8}$ (hcp).
Conclusions and outlook

• We presented an experimental setup that allows accurate measuring of the main parameters controlling the reaction: hydrogen pressure, temperature inside the fuel and at the heater, the difference between which can provide direct evidence of the excess heat.

• Our installation combines the heating with electromagnetic and radiation-induced driving, provides the temperature and gas pressure automatic control, gamma detectors etc.

• First tests of the interaction of Ni with H and LiAlH₄ under heating and gamma irradiation revealed important artefacts, which should be taken into account in further experimental setups.

Specially designed new material, based on amorphous \(\text{Nd}_{90}\text{Fe}_{10} \) composition shows abnormal heat production under hydrogenation, the physical origin of which requires further investigations.
Future plans: Ti-Zr-Ni alloys etc.

High-vacuum electron-beam melting unit for metals EBM-1.
Publications

Acknowledgments:
financial support from Quantum Gravity Research is gratefully acknowledged.