Nonification

v. 1.0.1

Raymond Aschheim
raymond@quantumgravityresearch.org

v 1.0.1 presented at AQG V, Los Angeles, October 29th, 2018
Advances in Quantum Gravity V in honor of Piero Truini

October 30, 2018
Content

Introduction
 Story
 9D coordinates
 9D coordinates
 Group Theoretic View
A8 extension of the standard model
 A8 includes A2+A2+A2
Tensor Network
 Tensor Network
 Spin Network
Magic star
 Jordan algebra
 F_4 action, E_6 action
 E_7 action, E_8 action
 The magic star
Quantum gravity
 Induced Fano plane
 E_8 Quasi-lattice compactification
 Quasi-lattice action

Raymond Aschheim | Nonification
This talk is dedicated to the career of Piero Truini which opened the path to an exceptional an magic unification.

We shall see how the partition of the E8 lattice into three A8 lattices, inviting us to use 9 dimensions coordinates, guide also us to an exceptionally symmetric unification... without supersymmetry.

"It is amusing to speculate on the possibility of a theory based on E9." is the conclusion of the chapter V, Exceptional Unification, of Pr. Anthony Zee’s book.

REF:

Zee, A. Unity of forces in the universe World Scientific. 1982
An Simplex lattices are naturally expressed in $n + 1$ dimension coordinates satisfying $\sum_{k=1}^{n+1} x_k = 0$.
Introduction
9D coordinates

- A_n Simplex lattices are naturally expressed in $n + 1$ dimension coordinates satisfying $\sum_{k=1}^{n+1} x_k = 0$
- E_8 lattice is the superposition of three A_8 lattices: $E_8 = \bigcup_{i=0}^{2} A_8^i$
- 72 of its roots are permutations of $\{3^1, -3^1, 0^7\}, \cong 0[3], \in 3A_8^0$
- 84 of its roots are $\mathcal{P}(-2^3, 1^6), \cong 1[3], \in 3A_8^1$
- 84 of its roots are $\mathcal{P}(2^3, -1^6), \cong 2[3], \in 3A_8^2$

$E_8 = \text{SU}(3) F + E_6 = A_2 F + E_6$
An Simplex lattices are naturally expressed in $n + 1$ dimension coordinates satisfying $\sum_{k=1}^{n+1} x_k = 0$

E_8 lattice is the superposition of three A_8 lattices: $E_8 = \bigcup_{i=0}^{2} A_8^i$

72 of its roots are permutations of $\{3^1, -3^1, 0^7\}$, $\cong \mathbf{O}[3]$, $\in 3A_8^0$

84 of its roots are $\mathbb{P}(-2^3, 1^6)$, $\cong 1[3]$, $\in 3A_8^1$

84 of its roots are $\mathbb{P}(2^3, -1^6)$, $\cong 2[3]$, $\in 3A_8^2$

\[
E_8 = SU(3)_F + E_6 = A_{2F} + E_6
\]

$248 \setminus A_{2F} + E_6 = (1, 78) + (8, 1) + (3, 27) + (\bar{3}, 2\bar{7})(1)$
Introduction
E6 subgroup in 9D

- E_6 lattice is the superposition of three A_8 lattices satisfying
 \[\sum_{k=1}^{3} x_k = \sum_{k=4}^{6} x_k = \sum_{k=7}^{9} x_k = 0. \]
- 18 of its roots are $\mathcal{P}(3^1, -3^1, 0^7), \cong O[3], \in 3A_8^0$

Figure: 3 orthogonal A_2 in E_6; from left to right: (a) A_2L (b) A_2C (c) A_2R.
Introduction
E6 subgroup in 9D

- E_6 lattice is the superposition of three A_8 lattices satisfying
 \[\sum_{k=1}^{3} x_k = \sum_{k=4}^{6} x_k = \sum_{k=7}^{9} x_k = 0. \]
- 18 of its roots are $\mathbf{3}(3^1, -3^1, 0^7), \cong o[3], \in 3A_8^0$
- 27 of its roots are $\mathbf{3}(−2^3, 1^6), \cong 1[3], \in 3A_8^1$

Figure: 27 lepto-quarks bosons B from $E6 \cap A_8^1$;
Introduction

E6 subgroup in 9D

- **E6 lattice** is the superposition of three A_8 lattices satisfying
 \[
 \sum_{k=1}^{3} x_k = \sum_{k=4}^{6} x_k = \sum_{k=7}^{9} x_k = 0.
 \]
- 18 of its roots are $\mathcal{P}(3^1, -3^1, 0^7)$, $\cong 0[3], \in 3A_8^0$
- 27 of its roots are $\mathcal{P}(-2^3, 1^6)$, $\cong 1[3], \in 3A_8^1$
- 27 of its roots are $\mathcal{P}(2^3, -1^6)$, $\cong 2[3], \in 3A_8^2$

![Diagram of E6 lattice](image)

Figure: 27 anti-lepto-quarks bosons \hat{B} from $E6 \cap A_8^2$;
Introduction

E6 subgroup in 9D

- E_6 lattice is the superposition of three A_8 lattices satisfying
 \[\sum_{k=1}^{3} x_k = \sum_{k=4}^{6} x_k = \sum_{k=7}^{9} x_k = 0. \]
- 18 of its roots are $\mathbb{P}(3^1, -3^1, 0^7)$, $\cong 0[3], \in 3A_8^0$
- 27 of its roots are $\mathbb{P}(-2^3, 1^6)$, $\cong 1[3], \in 3A_8^1$
- 27 of its roots are $\mathbb{P}(2^3, -1^6)$, $\cong 2[3], \in 3A_8^2$

\[E_6 = SU(3)_L + SU(3)_C + SU(3)_R + B + \overline{B} \quad (2) \]

\[78 = (8, 1, 1) + (1, 8, 1) + (1, 1, 8) + (3, 3, 3) + (\bar{3}, \bar{3}, \bar{3}) = B_L + B_C + B_R + B + \overline{B} \quad (3) \]
E_6 lattice is the superposition of three A_8 lattices satisfying
\[\sum_{k=1}^{3} x_k = \sum_{k=4}^{6} x_k = \sum_{k=7}^{9} x_k = 0. \]
18 of its roots are $\mathfrak{P}(3^1, -3^1, 0^7)$, \(\cong 0[3], \in 3A_8^0 \)
27 of its roots are $\mathfrak{P}(-2^3, 1^6)$, \(\cong 1[3], \in 3A_8^1 \)
27 of its roots are $\mathfrak{P}(2^3, -1^6)$, \(\cong 2[3], \in 3A_8^2 \)

\[E_6 = SU(3)_L + SU(3)_C + SU(3)_R + B + \overline{B} \quad (2) \]

\[78 = (8, 1, 1) + (1, 8, 1) + (1, 1, 8) + (3, 3, 3) + (\overline{3}, \overline{3}, \overline{3}) = B_L + B_C + B_R + B + \overline{B} \quad (3) \]

\[27 = (3, \overline{3}, 1) + (1, 3, \overline{3}) + (\overline{3}, 1, 3) = q^\gamma + \hat{q}^\beta + l^\alpha \quad (4) \]
Introduction

E6 subgroup in 9D

- E_6 lattice is the superposition of three A_8 lattices satisfying
 \[\sum_{k=1}^{3} x_k = \sum_{k=4}^{6} x_k = \sum_{k=7}^{9} x_k = 0. \]
- 18 of its roots are $\varPsi(3^1, -3^1, 0^7)$, $\cong 0[3]$, $\in 3A_8^0$
- 27 of its roots are $\varPsi(-2^3, 1^6)$, $\cong 1[3]$, $\in 3A_8^1$
- 27 of its roots are $\varPsi(2^3, -1^6)$, $\cong 2[3]$, $\in 3A_8^2$

\[E_6 = SU(3)_L + SU(3)_C + SU(3)_R + B + \bar{B} \] \hspace{1cm} (2)

\[78 = (8, 1, 1) + (1, 8, 1) + (1, 1, 8) + (3, 3, 3) + (\bar{3}, \bar{3}, \bar{3}) = B_L + B_C + B_R + B + \bar{B} \] \hspace{1cm} (3)

\[27 = (3, \bar{3}, 1) + (1, 3, \bar{3}) + (\bar{3}, 1, 3) = q^\gamma_\alpha + \hat{q}^\beta_\gamma + I^\alpha_\beta \] \hspace{1cm} (4)

- $q^\gamma_\alpha = \begin{bmatrix} u_r & u_g & u_b \\ d_r & d_g & d_b \\ h_r & h_g & h_b \end{bmatrix}$
- $\hat{q}^\beta_\gamma = \begin{bmatrix} \hat{u}_c & \hat{d}_c & \hat{h}_c \\ \hat{u}_m & \hat{d}_m & \hat{h}_m \\ \hat{u}_y & \hat{d}_y & \hat{h}_y \end{bmatrix}$
- $I^\alpha_\beta = \begin{bmatrix} N_1 & E^- & e^- \\ E^+ & N_2 & \nu_e \\ e^+ & \hat{\nu}_e & N_3 \end{bmatrix}$ \hspace{1cm} (5)
The relationship between the E_8 lattice and the Simplex lattice, $E_8 = 3A_8$, is illustrated and has been extended to exceptional periodicity algebras $^{[oh,oi]}$.

- exceptionally $84 = \Lambda^3 \mathbb{C}^9$ 3-form and $\overline{84} = \Lambda^6 \mathbb{C}^9$ 6-form in $SU(9)$ $^{[oi]}$.
- or generally $84 = 28 + 56 = \Lambda^2 \mathbb{C}^8 \bigoplus \Lambda^3 \mathbb{C}^8$ 2-form and 3-form, and $\overline{84} = 56 + 28 = \Lambda^6 \mathbb{C}^8 \bigoplus \Lambda^5 \mathbb{C}^8$ 6-form and 5-form in $Cl(8)$.

REF:

A8 extension of the standard model
A8 includes A2L, A2C and A2R

\[27 = (3, \bar{3}, 1) + (1, 3, 3) + (\bar{3}, 1, 3) \] \hspace{1em} (7)

27 breaks under SU(3)_C x SU(2)_L x U(1)_Y as

\[27 = 2(1, 1, 0) + (1, 2, \frac{1}{2}) + (3, 2, -\frac{1}{3}) + 2(1, 2, -\frac{1}{2}) \]
\[+ 2(3, 1, -\frac{1}{3}) + (1, 1, 1) + (3, 1, -\frac{2}{3}) + (3, 2, \frac{1}{6}) \] \hspace{1em} (8)
Tensor Network

- 248D algebra E_8 is coded by $G_{\pm} \in \mathcal{S}(\mathbb{O})$, $H_1, \ldots, H_7, H_+, H_- \in \text{Tr}_o(\mathcal{M}_8^3)$
- Its action on $J \in \mathcal{M}_8^3 \otimes \mathcal{M}_8^3$ is

$$E_8(H_1, \ldots, H_-)(J) = \delta J = [H_+, \mathcal{R}(J), H_-] - \sum_{k=1}^{7} e^{G_+} e_k e^{G_-} H_k \cdot \mathcal{R}(e_k J)$$

$$T = \sum_{j_i, j_j, o_i, o_j, z_i, z_j=1}^3 T^{j_i}_{j_j} o_i^{z_i} j_i^{o_j} o_j z_i j_j o_j z_j$$

$$T = J_1^1 \ J_2^1 \ J_3^1, \quad J_1^o \ J_2^o \ J_3^o, \quad J_{m_j}^{10} = O_1^{o_1} O_2^{o_2} O_3^{o_3}, \quad O_j^{10} = z_1^{10} z_2^{10} z_3^{10}$$

Figure: Fibonacci spaced tensor network projection
We insert the standard model in a spinfoam by a fermionic quantum tetrahedron whose 4 vertices have SU(3) values coming from the 4 A2 of E8.

\[
Z = \sum_{\{c\}} \sum_{j_f} \int_{SL(2,\mathbb{C})} dg_{ve} \int_{SU(2)} dh_{ef} \int_G dU_{ve} \prod_f d_{j_f} \chi^{\gamma_j_{j_f}j_f} \left(\prod_{e \in \partial_f} \left(g_{se, h_{ef} g_{et_e}^{-1}} \right)^{\epsilon_{ef}} \right) \prod_{e \in \partial_f} \chi^{j_f} (h_{ef}) \prod_c (-1)^{|e|} \chi^{\frac{1}{2}} \left(\prod_{e \in c} \left(g_{se, U_{se} U_{et_e}^\dagger g_{et_e}} \right)^{\epsilon_{ee}} \right).
\]

Figure: Partition function with fermion

Integral on cycles will reduce to SU(3) six-j symbols, when edges SU(2) are embedded in SU(3).
Magic star\(^{[ok]}\) projected\(^{[ol]}\) from Gosset polytope

REFERENCES:

Jordan Matrix:

- Each E_8 vertex holds an exceptional Jordan matrix $J \in M_8^3$
- 10D Minkowski Spacetime with a transversal octonion o as $J_2 = \left(\begin{array}{cc} t-x_8 & \bar{o} = x^0 e_0 - \sum_{k=1}^7 x^k e_k \\ o = x^0 e_0 + \sum_{k=1}^7 x^k e_k & t+x_8 \end{array} \right) \in M_8^2 = SL_2(O)$

- Central cross encoding scalar ϕ and $Spin(9,1)$ spinor $\Psi = \left(\begin{array}{c} \psi^+ \\ \psi^- \end{array} \right)$, $J = \left(\begin{array}{cc} t-x_8 & \begin{array}{c} \psi^+ \\ \phi-2t \end{array} \\ \begin{array}{c} \psi^- \\ o \end{array} & \begin{array}{c} \bar{o} \\ t+x_8 \end{array} \end{array} \right) \in M_8^3 = SL_3(O)$

- Jordan product: $J_1 \cdot J_2 = \frac{1}{2} (J_1 J_2 + J_2 J_1)$ [1]

REF:

Freudenthal product:

\[J_1 \times J_2 = \frac{1}{2} (2J_1 \cdot J_2 - \text{Tr}(J_1)J_2 - \text{Tr}(J_2)J_1 + I(\text{Tr}(J_1)\text{Tr}(J_2) - \text{Tr}(J_1 \cdot J_2))) \]

Associator:

\[[J_1, J_2, J_3] = (J_1 \cdot J_2) \cdot J_3 - J_1 \cdot (J_2 \cdot J_3) \]

Left quasi multiplication:

\[L_x : L_x(y) = x \cdot y \]

Quadratic map:

\[U_x = 2L_x^2 - L_x^2 \]

Linearized map:

\[V_{x,y} : V_{x,y}(z) = (U_{x+z} - U_x - U_z)(y) \]

Trilinear map:

\[\{x, y, z\} = V_{x,y}(z) = 2(L_{x,y} + [L_x, L_y])(z) \]

Axioms:

\[A1 : U_x V_{y,x} = V_{x,y} U_x, \quad A2 : U_{U_{xy}} = U_x U_y U_x \]

Jordan pair:

\[x, y | A1 \& A2 \& V_{U_{xy},y} = V_{x,U_y x} \]

REF:

Discrete Jordan Matrix

- Each octonion in J can be encoded by its 9D coordinates in a 3x3 matrix.
- Induced by lattice coordinates they can be restricted to integer \([5]\)

\[
J' = \begin{pmatrix}
t - x_8 & \psi_+ & \bar{\phi} \\
\bar{\psi}_+ & \phi - 2t & \psi_-
\end{pmatrix}
\]

REF:

F₄ action

F₄ action is a derivation [6] on \mathcal{M}_8^3:

- An element of 52D algebra F₄ is represented by two traceless H_+ and H_-
- Its action [7] on $J=H + \Phi$ is $F₄(H_+, H_-)(J) = \delta J = [H_+, J, H_-]$
- Invariants are $I_1 = Tr(J)$, $I_2 = Tr(J^2)$, $I_3 = Det(J) = \frac{1}{3} Tr(J \cdot J \times J)$

REF:

E₆ action

E₆ action is a derivation [⁶] on $\mathcal{M}_8^3 \otimes \mathbb{C}$:

- An element of 78D algebra $E₆$ is represented by $H, H_+, H_- \in Tr_0(\mathcal{M}_8^3)$
- Its action [⁷] on J is $E₆(H, H_+, H_-)(J) = \delta J = [H_+, J, H_-] + e_1 H_1 \cdot J$
- Invariants are $I_2 = Tr(J^2)$, $I_3 + \eta' I_3 = 3Det(J) = Tr(J \cdot (J \times J)^*)$, $I_4 = Tr((J \times J) \cdot (J^* \times J^*)^*)$

E₆(−26) action

An action on the reduced structure group is proposed in [⁸]

- $J = \Xi + \Psi + \Phi$
- $S = \frac{1}{8\pi} Tr \int d\sigma d\tau (\delta_\alpha \bar{\Xi} \delta^\alpha \Xi + \delta_\alpha \bar{\Psi} \delta^\alpha \Psi + \delta_\alpha \bar{\Phi} \delta^\alpha \Phi)$

REF:

E₇ action

An action of E_7 by a Freudenthal triple system on E_8 was proposed in [9]:

- 56D representation of E_7 as $\mathcal{M}^2_{27} = (\mathcal{M}^3_8)$

E₈ action

E_8 proposed action is a derivation on $\mathcal{M}^3_8 \otimes \mathcal{O}$:

- The action is extrapolated from Tits-Rosenfeld-Freudenthal magic square [10] expressed by Vinberg [10a] as:

$$L(A, J^3(B)) = \text{Der}(A) \bigoplus \text{Im}(A) \bigotimes \text{Tr}_0(J^3(B)) \bigoplus \text{Der}(J^3(B))$$ (11)

REF:

Magic star
From three A_8 lattices

Figure: Three A_8 lattices
Figure: Induced Fano plane
\[E_8 = G_2 \times H_4? \]

A golden selective projection operates the \(H_4 \) folding

Figure: Rotate \(E_8 \) projection from \(G_2 \) to \(H_4 \) Coxeter plane
Quantum gravity
Quasi-lattice action

Figure: Elser-Sloane Quasicrystal triacontagonally projected
A the observer

Choose a tetrahedron, select a vertex in it, select an operation

► Operation F_4 involves two E_8 vertices and updates one E_8 vertex
► Operation E_6 involves three vertices and updates two
► Operation E_7 needs choosing a top in the tetrahedron, involves seven vertices
► Operation E_8 involves the full magic star

B the observed

All Jordan matrices affected to lattice vertices are initially blank

P the observation

► Once the observer and its operation chosen, selected vertices, if blank, are initialized
► The operation is performed and vertices are updated
Figure: Elser-Sloane Quasicrystal with numbered 600-cells
Figure: Elser-Sloane Quasicrystal unflattened
Quantum gravity
Quasi-lattice action

Figure: 30-ring
Quantum gravity
Quasi-lattice action

Figure: Two rings
Quantum gravity
Quasi-lattice action

Figure: Two rings
Quantum gravity
Particle Model

Figure: Gosset polytope projected to Tony’s new model
Quantum gravity
Particle Model

Figure: ε_8 contracted as $\mathfrak{h}_{92} \rtimes a_7$.
Thank you!
Quantum gravity
Particle Model

Figure: e_8 contracted as $h_{92} \times a_7$, superposed to a Kongokai "Diamond" mandala (Tō-ji, Kyoto, 9th century - Credit https://commons.wikimedia.org/wiki/File:Kongokai.jpg). “It is like a diamond with tens of thousands of facets,” Bertram Kostant, an emeritus professor of math at M.I.T., said. “It is easy to arrive at the feeling that a final understanding of the universe must somehow involve E8, or, otherwise put, nature would be foolish not to utilize E8.” https://www.newyorker.com/magazine/2008/07/21/surfing-the-universe